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Utilization of nondestructive control methods for construction and materials is as- 
sociated with the construction and decoding of wave fields produced by inclusions and in- 
homogeneities of different kinds in a medium. The modeling of seismic foci also reduces to 
similar problems [i]. The problem of the emission by a cylinder of finite size and radius 
r 0 into an infinite medium was apparently first investigated in [2]. In this paper the 
cylinder walls were subjected to nonstationary pressures (longitudinal and two kinds of 
shearing). With such a kind of loads taken into account, representations are obtained for 
the amplitudes of longitudinal and transverse polarized waves. Moreover, the question of 
the energy distribution between the kinds of waves mentioned is studied. It is shown that 
under the effect of just the longitudinal pressure, an SV-wave emerges from the source, 
whose amplitude is 1.6 times greater than the P-wave and which is directed at a 45 ~ angle. 
Recently the main emphasis has been all the more on taking account of reflections from the 
surface and inner inhomogeneities (see [i, 3, 4], say) rather than on studying the emitted 
field (problem for an infinite medium). 

The problem occurring in a study of wave fields excited in an elastic inhomogeneous 
half-space by a deep infinitely thin source of finite size, the pile foundation of a vibra- 
tion installation, say, is considered in this paper. The solution of the problem is a super- 
position of the wave field emitted directly by the source and reflected from the half-space 
surface. The vertical and horizontal vibrations of the pile are simulated by a bulk force 
distributed under the surface of an elastic half-space along a finite segment. Analytic 
representations are obtained for the amplitudes of the longitudinal, transverse and Rayleigh 
waves in the far zone from the source. 

I. A homogeneous elastic half-space(-- ~ ~ z, y ~ ~, -- ~ ~ z ~ 0) is considered. Steady 
harmonic vibrations of the medium v = Re[ue i~t] excited by an infinitely thin deep source of 
finite length are described by the Lam~ dynamic equations 

(~ ~ 2p)grad div u -- ~rotrotu + f ~ p~Su = 0 (I.I) 

with the boundary conditions 

~=z = ~uz = azz = 0, -- ~ # ,  V ~ , z =  O. (1.2) 

The displacements u = {u(x, y, z), v(x, y, z), w(x, y, z)} should vanish at infinity 
and the radiation condition resulting from the principle of limit absorption [5] should be 
satisfied. In the relationships (I.I) ~ is the cyclic frequency of source vibration, ~, p 
are Lam~ coefficients, p is density of the medium, f = {fz, f2, fs} is the bulk force vector 
simulating the action of a vertically oriented source on the medium,1~(z,y,z) = ~g)6(x--xm, 
~--Ym)' --h<z<--h0. All the physical quantities are reduced to dimensionless form. The 
Lam~ coefficients are referred to a certain characteristic value of the shear modulus of the 
medium P0 = 109 N/m2 the density p to the density P0 = 10s kg/ms, and the linear dimensions 
to a characteristic linear dimension ~0 = I m. In this case the generalized frequency m ffi 

2~/0~/P0-7~0 = 6"I0-3v, where v is the frequency in Hz. 

After application of the Fourier transformation with parameters =z, =2 in the coordi- 
nates x and y the initial boundary value problem is reduced to the solution of systems of 
ordinary differential equations 

Y' = AY ~- H; (1.3) 

TYlzffi~o = O, Y - - O ,  z ~  - -oo ;  ( 1 . 4 )  

x'  = B x  + e; ( 1 . 5 )  

(L .X) Iz=  o = O, X - , - O ,  z - , .  - -oo .  ( 1 . 6 )  
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Here A, B, and T are matrices with the constant coefficients 

o~176 (,o) o o 

0 0 ' b21 ' 
\ 0 a~  a~  0 / 

T =(--X=' o 0 x+02~ ) 
o -t~,= ~ -~p,~ 

b,~ = (p=' -- P~D/P, a~, = [=~(~ + 2p) -- P~H/P, 
au = --(X + ~)Ip, a,, = ='(~ + ~)I(~ + 2p), 

a~s = (=~P -- P~)/(;~ + 2it), ~--- =z~ + =2" 

l~ne prime denotes differentiation with respect to z and the vectors y, X, H, P, L have the form 

Y = { r  r  w ,  w ' } ,  x = {~ ,  v ' } ,  

+~, 

Fl=/l (z) e i(~*xm+%r *, W, W(=,, a s, z)=~ ~j~, ,, w (x, y, z) ei(~ax+~SV)dzdy and the functions ~(z, y, z) where 

and ~(x, y, :z) are connected with the displacements u = {u, v, w} by the following relation- 
s h i p s  u = 0~/ar + ~ /oy ,  ~ = o~/0y - -  o#/0x. 

The  s o l u t i o n  o f  t h e  i n h o m o g e n e o u s  s y s t e m s  ( 1 . 3 )  and  ( 1 . 5 )  i s  s o u g h t  i n  t h e  f o r m  o f  a 
sum of the particular solution determined by the method of variation of constants and a gen- 
eral solution of the corresponding homogeneous system 

4 4 

Y = ~ dheVkZmk + ~, t k (z) e'kZmk; ( I. 7 ) 
h = l  k=l 

s 'k~ s ,~, ( I. 8) 

h=l k=l 

P ~ .~2 P~s 
H e r e  Y1., = -+ e~, = _ + / = '  - -  xl; ?s., = -+ a2---- -+ V a2 - -  x~; x~ -- ~ .  2= -~ - ;  ", = +o, ;  mh, n~ a r e  t h e  e i g e n -  

v a l u e s  and  e i g e n v e c t o r s  o f  t h e  m a t r i c e s  A and  B. The  s i n g l e - v a l u e d  b r a n c h  o f  t h e  r a d i c a l s  
o l ,  ~2 i s  d e t e r m i n e d  b y  t h e  c o n d i t i o n  R e o > O ,  I m a < O .  Such  a s e l e c t i o n  o f  t h e  b r a n c h  s a t i s -  
f i e s  the radiation principle [5]. The  coefficients tk(Z), ~k(Z) have the form 

z 

0 
ql = ei(=l~m+%Ym)/2pO~ 

where the upper sign corresponds to k = 1 and the lower to k = 2. The unknown coefficients 
d k and c k of the solutions of the homogeneous systems are determined from the boundary con- 
ditions for z = 0 and at infinity. To satisfy the condition as z ~ -~ it is necessary to set 

= --~(--~, dt : --Q(--~, q = --%(--~ (1.9) 

in the solutions (1.7) and (1.8). The coefficients t2(-h) , t~(-h), T2(--h) differ from t2(z), 
-h 

t~(z), x2(Z) by the fact that in the expressions determining them must be used I X (--h)= ~ x 

-- O 

fz(~)e;~ in place of IX(z). Selection of the coefficients d2, d~, c 2 in the form (1.9) is 
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justified by the fact that by solving the two homogeneous problems of the type (1.3) and 
(1.5) for the domains--hod z~0,- m.~<, <--h and one inhomogeneous problem for the domain 
--h<z<~--h o, and then merging the solutions on the basis of the condition of equality of the 
displacements and stresses on the domain boundaries, we arrive at the relationships (1.9). 
The remaining unknown coefficients dl, d s are determined from the conditions (1.4) and (1.6) 
for z ffi 0. 

Finding the solution of the boundary value problems (1.3)-(1.6) and applying the in- 
verse Fourier transform to the equalities 

U(~, ~,, z) = -- ~(~, ~,, ,) -- ~w(~, ~, ,), 

v(~, ~, .) = --~(~,, ~, ,) + ~%w(~, ~, .), 

W(a,, a, ,  z)= W(a,, ~,, ,), 

we obtain the solution of the initial problem (i.i) and (1.2) 

u (z, u, ,1 = ~ S (qkeekz -~ Gke-~ e-l[s* (z-xm)+a, (e-Pm)l d,~zd,~n, 
P1 h = l  

D~ = --%(--~) {~m,}~ -- q ( - ~ )  {~m,}~, ~ = ~, 2, 

D, =--%(--h) ~='o., 

]P = t~,k_ 1 (:) m sr-* - -s~- i '  p, k ----- i, 2, 
2p--1 H~ = [ll,,k (z) - -  t2k ( - -  h)] mst ~ . p, k = I ,  2. 

( 1 . 1 0 )  

The explicit form of the functions M, N, P, R, S is presented in [5], and the contours of 
integration are selected in conformity with the limit absorption principle. 

2. Let us analyze the wave field in the far zone. Applying the method of stationary 
phase [6] to (1.10), we obtain 

I cos e ~ 
uric, ~, , ) -  2~R ~ Q,~(%,,, %.)~,~e~R"(i§ R.-,.~. ( 2 . 1 )  

A spherical coordinate system z = R ~s~.sinS, 0 ~ ~.~<2s, Y = R sin ~.sinB, R/2 ~ O ~ ~,z = R cos% is used 
here and al. = --xnsinO. ~s~,a~. = --u.mne.sm~ are the stationary points. The first and second 

components of (2.1) describe the longitudinal and transverse waves, respectively. 

An analytic representation of the solution corresponding to slightly damped surface 
waves is determined by residues at the real poles of the integrand and has the following 
form in the case of a homogeneous half-space 

(~, v, .) =, ~- (%~~ + %.-~9 ~ ~ ~ L~(i + o (~-~)),. ~, 
k=l 

where ~ is a Rayleigh pole, and r = 4x 2 + y2. The relationships obtained permit determina- 
tion of the amplitudes of the longitudinal, transverse, and Rayleigh waves in the far zone 
from the source as a function of the frequency, the depth at which the source lies, its lin- 
ear dimensions, and also the form of the applied load and its distribution along the source 
dimensions. 

3. A numerical analysis is performed on a digital computer for horizontal and vertical 
loads with the following parameters: a ffi 7 Is the source linear dimension, h ffi 24, 48, 72 
are depths at which it lies, f = Vs/V p = 0.2 is a parameter characterizing the properties of 
the medium. Here v s, Vp = 1 are the transverse and longitudinal wave velocities. The load is 

a 

along the source according to the law f(~) = k~ + b. Here ~1 (Da~I= i, distributed f(,)ff(0) = ,, 
0 ~ s ~ t ,  k = b (8 - -  i~ la,  b = 2/(~(t  + 8)). o 
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Figure 1 shows shapes of the radiation directivity patterns for longitudinal waves for 
horizontal and vertical loads (lines 1-3 and 4, 5, respectively). The possibility of a non- 
uniform load distribution along the source dimensions was taken into account by the parameter 

= I, 0.5, 0 (lines 1-3) for m = 0.012, h = 24. It is seen that as E tends to zero the P- 
wave amplitude first diminishes and then grows abruptly. However, the tendency of this de- 
pendence is such that as the depth at which the source lies changes (for instance h = 48) 
only an increase in the longitudinal wave amplitude is observed as g diminishes. Such changes 
are due to interaction between the waves emitted by the source and reflected from the half- 
space surface. Analogous dependences with respect to E are characteristic even for the ver- 
tical load. Lines 4 and 5 correspond to ~z = 0.012, m2 = 0.06 for E = I, h = 24. The value 
lupl on line 4 diminishes three times. 

It is seen that as the frequency increases lobes appear in the previous drop-shaped mode 
of the directivity pattern, in which the radiation maximum must now already be in a direction 
different from the strictly downward direction, and have a lower value. In the case of a 
horizontal load, an increase in the source vibrations frequency from ~z to m2 results in the 
radiation maximum being shifted in the directivity pattern towards lower values of the angle 
8 and to grow here. 

Transverse wave directivity patterns for a vertical and horizontal load (solid and dashed 
lines, respectively) are represented in Fig. 2 for e = i, j = 0.2, m = 0.012. In each of the 
cases the depths h = 24, 48, 72 correspond to lines 1-3. The values of ln~i on lines 1-3 di- 
minished three times for the horizontal load. It is seen from Figs. i and 2 that the ampli- 
tude of the shifts in the transverse wave is greater than the amplitude of the shifts in the 
longitudinal wave by 1-2 orders on the average, depending on the kind of load. This is due 
to the fact that the source under consideration works in shear while, as a rule, longitudinal 
vibrations of significant amplitude excite sources operating in compression-expansion. 

The dependence of the Rayleigh wave on the frequency is presented in Fig. 3. The solid 
lines correspond to a horizontal load, and the dashes to a vertical load. In both cases the 
lines 1-3 correspond to e = i, 0.5, 0 and h = 24. 
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